Computec

CDD6

Computec Door Drive 6

Lift door Controller

QUICK REFERENCE for MAGNETIC SWITCHES applications

Note: the complete user manual can be downloaded from the website www.computecelectronics.com (scan the QR code below)

Standards and Codes References

All the codes references can be found in the door drive user manual.

Door Drive data

Supply voltage	$[100 ; 240] \mathrm{Vac} 1-\mathrm{ph} 50-60 \mathrm{~Hz},(115 \mathrm{~V}-20 \%, 230 \mathrm{~V}+30 \%)$	Vac
Available Peak output power	300	VA
Nominal output power	200	VA
Working Temperature	$[-10 ;+60]$	${ }^{\circ} \mathrm{C}$
Humidity	$[20 ; 80]$ non condensing	$\%$
Electrical protection	$[5 \times 20,4 \mathrm{~A}]$ rapid fuse on main power supply line	
	$[5 \times 20,8 \mathrm{~A}]$ fuse on the battery supply line	
Environmental protection	$\mathrm{IP}-54$ case	

Compatibles Motors Data

(Code) Motor Type / Transmission / Encoder	Nominal power	Nominal Voltage	Nominal current
DC motors for magnetic switches applications			
(05) DC 1Nm comp. F28/LMDC2010	-	-	3.6 A
(06) DC 2Nm comp. F29/LMDC2011	-	-	6.0 A
(07) DC 1Nm comp. Digidoor 1Nm	-	-	3.6 A
(08) DC 2Nm comp. Digidoor 2Nm	-	-	6.0 A
(19) Siboni ${ }^{\text {TM }} 65 \mathrm{PC} 132$ Poly V	150 VA	65 V	2.7 A
(22) Siboni ${ }^{\text {TM }}$ 65PC132 Poly V Digidoor ${ }^{\text {TM }} 1 \mathrm{Nm}$	150 VA	65 V	2.7 A

Compatibles Magnetic switches systems

Manufacturer	System Name	Notes
Semag $^{\text {TM }}$	ASC 10/20 ADC10/11 - Digidoor SEM 10/11	The digidoor system does not have the LA switch
RST $^{\text {TM }}$	LMDC 2010/2011	-
Sematic $^{\text {TM }}$	SDS DC-compatible	-
Sematic ${ }^{\text {TM }}$	F28 / F29, F28 / 29 B, F28C / F29 C	-

Installation

The installation of the door drive has to be performed by expert technical personnel, having all the professional requirements expected, based on the active law in the installation country. Before proceeding with the installation of the door drive it is mandatory to use all the necessary tools to execute the installation operations. Be sure to operate in safe working conditions, setting the lift system in inspection mode, before to start any operation on the door operator

The CDD6 system is a part of the complete lift door operator, consisting in:

- Mechanical door operator: Header, Carriages, Belt, Motor
- Door Drive (the CDD6)
- Contacts Interface to the main lift controller

Il controller di porta presenta le seguenti connessioni:

\mathbf{N}°	ID	
1	ON	Power on key
2	OFF	Power off key
3	Display	7-segment display (two digits) to show status/configuration
4	"1" "2" "3" "4"	Functional keys for visualization/movement/programming
5	X8	Plug for upgrade/configuration external device
6	X4	Plug for motor/battery
7	X5	RJ45 plug for motor encoder
8	X9	Direct connection of optical light curtains (including power)
9	X3.1	Plug for Elevator controller commands
10	X3.2	Plug for local inputs of the door operator
11	X2	Plug for drive output to the elevator controller
12	X1	Plug for main power supply
13	X10	CAN bus connector

For further details, please refer to the self-explicative door drive stick (reported below) applied on the CDD6 door drive cover.

Check of the electrical parts

Verify the presence of the correct supply voltage, as reported in the technical specifications. Once the mechanical installation of the CDD6 drive is completed, proceed as reported below

Computec

		Please Note: by default, open/closed door relays are N.C. (they open in the final position). The behavior logic can be changed in the settings P-76 (door relay closed), P-77 (door relay open). When door drive is not powered, the contacts are always closed.
$\mathbf{3}$	Power supply connection N	Nominal Supply Voltage: $[100-240] V a c ~[50-60] H z, ~ s i n g l e ~ p h a s e ~$
$\mathbf{4}$	Final Checks	

Direct replacement of previous door drives

The CDD6 door drive, when used for magnetic switches old drive replacement, permits to control the motor and to move the lift door with better speed profiles and better torque control. It is anyway very, during the installation phase, to apply the correct cabling for the CDD6 inputs from the door operator, and for the outputs from CDD6 to lift controller. Following it is shown how to proceed in the different situations. In any case there is a common operation sequence to follow, to perform a correct system set-up before the final cabling.

STEP	Description	Notes
1	Power supply voltage	The CDD6 door drive is directly supplied from the single-phase line Voltage at 230Vac. The 220/24V transformer is no more necessary, and can be removed. Switch off the power supply of the door drive, then apply the power supply cable for the CDD6, present in the door drive box.
2	I/Os	Remove the previous connections from the door drive to be replaced, and follow the next instructions to connect all the I/Os to the CDD6.

The door operator with magnetic switches consists in 4 (or 3 in case the door open limit switch is not installed) magnetic devices that indicate the door position reference, based on the switch status. As reported in the next table, the door final position switches (LA and LC) are open when the related position is reached. The deceleration switches RA and RC, are closed when the related deceleration is active.
The following picture shows the schematic structure of the door operator with the magnetic switches.

Check with a multimeter the magnetic switches input voltage, in the specific door positions:

Magnetic Switch	Door OPEN	Door in MIDDLE position	Door CLOSED
LC (39-15) (measure between 39 e 38)	CLOSED (24Vdc)	CLOSED (24Vdc)	OPEN (OVdc)
RC (42-15) (measure between 42 e 38)	OPEN (OVdc)	OPEN (OVdc)	CLOSED (24Vdc)
RA (41-15) (measure between 41 e 38)	CLOSED (24Vdc)	OPEN (OVdc)	OPEN (0Vdc)
LA (40-15) (measure between 40 e 38)	OPEN (0Vdc)	CLOSED (24Vdc)	CLOSED (24Vdc)

Computec

In case the door limit switches (LA and LC) are connected directly to the Lift controller, it is VERY IMPORTANT the they MUST be connected to the CDD6, as reported in the previous table and in the next paragraph. The specific output of the CDD6 door drive must then be connected in the same position of the MLC interface connector plug. In the next pages, specific instructions are reported, for the different old door drives replacement, compatible with CDD6.

Cabling instruction

To adapt the previous cabling to the CDD6 door drive, few simple operations need to be executed, to implement full replacement without any risk of anomalous behavior.

The following picture shows a simple connection schematic per the interface between CDD6, magnetic switches and lift controller. This description is related to a typical situation of the terminal connections on the car roof. The tables in the next pages show the sequence of task to execute.

Step	Description	Notes
Output signals from door drive to lift controller		
1	Common voltage line connection for CDD6 inputs	In some cases, the common voltage lines for the magnetic switches and for the commands from lift controller are different. If so, it is necessary to use the auxiliary 24 Vdc line from the CDD6 (pin15) to supply ALL the magnetic switches (LC, RC, RA, LA) closing the 37-38 bridge for the OVaux and OV in connection, or to use the common line from the lift controller for both magnetic switches and operating commands (bridge 37-38 has to be removed). It is NOT possible to use both common lines, without the risk to damage door drive or lift controller. The CDD6 inputs work with input voltage from 8 Vdc until 32 Vdc .
2	Remove the original connections for LA, LC and common line to the MLC	If the original connection of LA and LC switches goes directly to MLC connector, they need to be moved and connected to the CDD6, then proceed with step 2. CDD6 needs the inputs from LA and LC switches, to optimize the parking phase management, and repeats the LA and LC status through its output for the lift controller use.
3	Connect the LA and LC outputs from CDD6 to the connector for the lift controller, in the same position of point 1	Connect the common voltage line from MLC to pins 17 and 19 of the CDD6 output connector. Then connect CDD6 pin16 (LA) of to pin16 of MLC connector, and CDD6 pin18 to pin18 of the MLC connector.
4	Move, in case they are present, the connection of IM output from old door drive to CDD6 IM output	Connect the common voltage line from to pin4 of the CDD6 output connector, then pin1 (N.C. contact) or pin4 (N.O contact) to MLC reversing signal.
Input signals from magnetic switches to CDD6		
5	Use the CDD6 24 Vdc common line for the LA, LC, RA, RC signals from magnetic switches	Connect the pin15 from CDD6 to the common line of the magnetic switches.
6	Connect the RA, RC, LA, LC contacts from magnetic switches to the specific CDD6input	Connect each signal to the correspondent CDD6 input: $R A$ in pin 41 ; $R C$ in pin 42 ; $L A$ in pin 40 ; $L C$ in pin 39
Operating commands from MLC to CDD6		
7	Connect the KA, KC, KB commands to the specific CDD6inputs DOC, DCC, RSC	Move the wires connection from old door drive to CDD6
8	In case the command logic is reversed, apply a pull-up resistor for every CDD6 input	CDD6 can be configured for reverse command logic, setting parameter P99=3, but it is necessary to apply a pull-up resistor (1k8R 1 W) for each connected command

Upgrade from ASC 10/20, ADC10/11, SEM10/11,

LMDC2010/2011, F28-B, F29 -B, F28C, F29C or Digidoor

The following table shows the connections from these drives to CDD6

ASC 10/20 ADC 10/11 LMDC2010 LMDC2011 F28-B F29-B F28-C F29-C	Digidoor	Pin Function	CDD6 pin
Controller connectors			
1	1	Reversing relay, N.C. contact	1
2	2	Reversing relay, N.O. contact	2
3	3	Closing command	3
4	4	Reversing relay, common contact	4
5	5	Opening command	5
6	6	Magnetic switches common line	15
7	7	24 Vac from transformer	Not connected
8	8	24Vac from transformer	Not connected
9	9	Motor connection	43
10	10	Motor connection	44
11	11	Opening deceleration switch input	41
12	12	-	Not connected
13	13	Closing deceleration switch input	42
14	14	-	Not connected
15	15	CDD6 24Vdc common line	15
Connections to MLC (Main Lift Controller)			
16	NOT PRESENT	LA relay door open limit signal to MLC	16
17	NOT PRESENT	LA relay door open limit signal to MLC	17
18	18	LC relay door closed limit signal to MLC	18
19	19	LC relay door closed limit signal to MLC	19
Magnetic switches			
16	NOT PRESENT	LA, door open limit switch	40 (NOT CONNECTED for Digidoor)
17	NOT PRESENT	Common line for LA switch	15 (NOT CONNECTED for Digidoor)
18	18	LC, door closed limit switch	39
19	19	Common line for LC switch	15
11	11	RA, opening deceleration switch	41
15	15	Common line for RA switch	15
13	13	RC, closing deceleration switch	42
15	15	Common line for RC switch	15

Once the physical installation phase described in the previous paragraph is completed, it is possible to proceed with the power ON of the device and its configuration. In case of problems during the execution of the phases, please refer to user manual. Refer to previous paragraph Errore. L'origine riferimento non è tata trovata.for the front panel use.

STEP	Operation	Description	Notes
1	Power supply test	Connect the main power supply. Press key and checks the front panel display as indicated. Then press \square OFF key.	88 followed by
2	AUTOSET execution	Put the door panels near to the panels closed position (gap<10cm), then press and keep pressed key on the door drive front panel. key, checking that "SL" is shown on the door drive display, then release key 1 The door starts the auto-set procedure detecting: - the closing rotation - the magnetic switches activation sequence, during the door opening movement - Self-calculation of accelerations and decelerations, based on current position of the installed magnetic switches. In case the of errors or alarms, proceed with the checks suggested in the user manual. Er1: the initial door position is wrong, please check the door panels start from closed position, or see Er14 Er3: obstacle present Er10: detector interruption (light curtains, photocells) Er14: wrong magnetic switches, please check magnetic switches correct connections for LC RC RA LA The learning phase is completed	NORMAL, INSP. and CONFIG LEDS are all ON Display: S $L_{\text {fixed }}$ Display in case or error: Er alternate to the error code In case of alarm AL alternate to the alarm code Display: $O P_{\text {fixed }}$
	EN	CDD6: Quick Reference for Magnetic Switches application - rev. 04	Page 10/11

Computec

Installation trouble-shooting

The installation sequence previously reported describes all the steps that have to be executed to operate a correct and complete set-up of the door system. In case of issues, or if anomalous behaviours happen during the installation, please refer to the user manual, paragraph "Troubleshooting (FAQ)". For any alarms, please refer to the user manual, paragraph "Alarms".
\qquad

